NUMERIC PALINDROMES IN PRIMITIVE AND NON PRIMITIVE PYTHAGOREAN TRIPLES
نویسندگان
چکیده
منابع مشابه
Random Sequences from Primitive Pythagorean Triples
This paper shows that the six classes of PPTs can be put into two groups. Autocorrelation and cross-correlation functions of the six classes derived from the gaps between each class type have been computed. It is shown that Classes A and D (in which the largest term is divisible by 5) are different from the other four classes in their randomness properties if they are ordered by the largest ter...
متن کاملIndexing Properties of Primitive Pythagorean Triples for Cryptography Applications
This paper presents new properties of Primitive Pythagorean Triples (PPT) that have relevance in applications where events of different probability need to be generated and in cryptography.
متن کاملDatasets on the statistical and algebraic properties of primitive Pythagorean triples
The data in this article was obtained from the algebraic and statistical analysis of the first 331 primitive Pythagorean triples. The ordered sample is a subset of the larger Pythagorean triples. A primitive Pythagorean triple consists of three integers a, b and c such that; [Formula: see text]. A primitive Pythagorean triple is one which the greatest common divisor (gcd), that is; [Formula: se...
متن کاملPythagorean Triples
Let n be a number. We say that n is square if and only if: (Def. 3) There exists m such that n = m2. Let us note that every number which is square is also natural. Let n be a natural number. Note that n2 is square. Let us observe that there exists a natural number which is even and square. Let us observe that there exists a natural number which is odd and square. Let us mention that there exist...
متن کاملPythagorean Triples
The name comes from elementary geometry: if a right triangle has leg lengths x and y and hypotenuse length z, then x + y = z. Of course here x, y, z are positive real numbers. For most integer values of x and y, the integer x + y will not be a perfect square, so the positive real number √ x2 + y2 will be irrational: e.g. x = y = 1 =⇒ z = √ 2. However, a few integer solutions to x + y = z are fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JP Journal of Algebra, Number Theory and Applications
سال: 2015
ISSN: 0972-5555
DOI: 10.17654/jpantaaug2015_021_030